فیزیک ذهن

معرفی و تشریح رشته ای جدید به نام فیزیک ذهن

فیزیک ذهن

معرفی و تشریح رشته ای جدید به نام فیزیک ذهن

تونل‌زنی کوانتومی

از ویکی‌پدیا، دانشنامهٔ آزاد

Quantum Tunneling.jpg

تونل‌زنی کوانتومی (به انگلیسی: Quantum tunneling) به فرایندی کوانتومی گفته می‌شود که در آن یک ذره که انرژی‌اش کمتر از ارتفاع سد پتانسیل است، از سد پتانسیل می‌گذرد. این فرایند کاربرد بسیاری در فناوری دارد. برای نمونه میکروسکوپ‌های الکترونی تونلی از این ویژگی استفاده می‌کنند. این پدیده با استفاده از قوانین کلاسیک توجیه ناپذیر است و خود دلیلی بر ضعف مکانیک نیوتنی است .

یک مثال دیگر نیز در MOSFET هاست که الکترون‌های کانال، به طور عادی نمی‌توانند از اکسید گیت عبور کنند، ولی با کوچک تر شدن طول اکسید، مقداری از جریان کانال توسط گیت به علت این پدیده نشت می‌کند.

نظریه میدان‌های کوانتومی

از ویکی‌پدیا، دانشنامهٔ آزاد

نظریه میدان‌های کوانتومی چارچوبی نظری برای بازسازی مدل‌های کوانتوم مکانیکی سیستم هایی مهیا می کند، که در فیزیک کلاسیک با میدان‌ها یا سیستم‌های بس ذره ای توصیف می شد.


کلیات مربوط به نظریه

در نظریهٔ میدان‌های کوانتومی نیروهای میان ذرات توسط ذرات دیگر برقرار می شوند. برای نمونه، نیروی الکترومغناطیسی میان دو الکترون با رد و بدل فوتون‌ها امکان می یابد. با این حال نظریه فوق بر تمام نیروهای بنیادی به کار برده می شود. بردارهای بوزونی متوسط نیروی ضعیف را، گلوئون‌هاگراویتون‌ها نیروی گرانشی را برقرار می سازند. این ذرات حامل نیرو، ذراتی مجازی اند و طبق تعریف، زمانیکه حامل نیرو هستند امکان آشکارشدن شان وجود ندارد، زیرا عملیات آشکارسازی گواه بر عدم حمل نیرو خواهد بود. نیروی قوی، و


در نظریه میدان‌های کوانتومی، فوتون‌ها به صورت کوانتاهای میدان پنداشته می شوند و نه توپ‌های کوچک بیلیارد!امواج پکیده ای که در میدان به صورت ذرات به نظر می رسند. همچنین فرمیون‌ها -مانند الکترون- را نیز می توان به صورت امواج در میدان توصیف کرد، و این در حالیست که هرنوع فرمیون میدان خاص به خودش را دارد. به طور خلاصه، تصویر کلاسیکی از" همه چیز به شکل ذرات و میدان هاست"، در نظریه میدان‌های کوانتومی به صورت" همه چیز ذره است" و یا در نهایت "همه چیز میدان است" در می آید.

در این نظریه با ذرات نیز به صورت حالت‌های برانگیختهٔ میدان برخورد می‌شود (کوانتای میدان).این میدان خاص را می توان نوعی خوش شانسی دانست زیرا که در این صورت لازم نیست نگران پیامدهای اصل طرد پاولی بین فرمیون‌های مختلف مثلا بین الکترون‌ها و نوترون‌ها باشیم.در این حال می توان با آسودگی خیال حالت‌های انرژی مربوط به هر فرمیون را جداگانه بررسی کرد

کاربردها

این نظریه به طور گسترده در فیزیک ذرات و فیزیک ماده چگال کاربرد دارد.اکثر نظریه‌ها در فیزیک جدید ذرات (شامل برنظریه استاندارد ذرات بنیادی و برهمکنش‌های میانشان) با نظریه میدان‌های کوانتومی نسبیتی فرمول یندی می شوند. نظریه میدان‌های کوانتومی در پدیده‌های گوناگونی از فیزیک ماده چگال کاربرد دارد، به ویژه هنگامی که تعداد قابل توجهی ازذرات امکان افت و خیز دارند_ برای نمونه، نظریهBCC در ابر رسانایی.

آشنایی با کوانتم

واژهٔ کوانتوم (به معنی «بسته» یا «دانه») در مکانیک کوانتومی از اینجا می‌آید که این نظریه به بعضی از کمیت‌های فیزیکی (مانند انرژی یک اتم در حال سکون) مقدارهای گسسته‌ای نسبت می‌دهد. بسیاری از شاخه‌های دیگر فیزیک و شیمی از مکانیک کوانتومی به عنوان چهارچوب خود استفاده می‌کنند؛ مانند فیزیک ماده چگال، فیزیک حالت جامد، فیزیک اتمی، فیزیک مولکولی، شیمی محاسباتی، شیمی کوانتومی، فیزیک ذرات بنیادی، و فیزیک هسته‌ای. پایه‌های مکانیک کوانتومی در نیمهٔ اول قرن بیستم به وسیلهٔ ورنر هایزنبرگ، ماکس پلانک، لویی دوبروی، نیلس بور، اروین شرودینگر، ماکس بورن، جان فون نویمان، پاول دیراک، ولفگانگ پاولی و دیگران ساخته شد. بعضی از جنبه‌های بنیادی این نظریه هنوز هم در حال پیشرفت است.

توصیف مکانیک کوانتومی از رفتار سامانه‌های فیزیکی اهمیت زیادی دارد، زیرا در مقیاس اتمی نظریه‌های کلاسیک نمی‌توانند توصیف درستی ارائه دهند. مثلاً، اگر قرار بود مکانیک نیوتنی و الکترومغناطیس کلاسیک بر رفتار یک اتم حاکم باشند، الکترون‌ها به سرعت به سمت هسته اتم حرکت می‌کردند و به آن برمی‌خوردند. ولی در دنیای واقعی الکترون‌ها در نواحی خاصی دور اتم‌ها باقی می‌مانند.

در ساختار مکانیک کوانتومی، حالت هر سیستم در هر لحظه به وسیلهٔ یک تابع موج مختلطاتم گاهی به آن اُربیتال می‌گویند). با این ابزار ریاضی می‌توان احتمال نتایج مختلف در آزمایش‌ها را پیش‌بینی کرد. مثلاً با آن می‌توان احتمال یافتن الکترون را در ناحیهٔ خاصی در اطراف هسته در یک زمان مشخص محاسبه کرد. بر خلاف مکانیک کلاسیک، نمی‌توان هم‌زمان کمیت‌های مزدوج را، مانند مکان و تکانه، با هر دقتی پیش‌بینی کرد. مثلاً می‌توان گفت که الکترون در ناحیهٔ مشخصی از فضا است، ولی مکان دقیق آن را نمی‌توان معلوم کرد. البته معنی این حرف این نیست که الکترون در تمام این ناحیه پخش شده‌است. الکترون در یک ناحیه از فضا یا هست و یا نیست. این ناتوانی در تعیین مکان الکترون را اصل عدم قطعیت هایزنبرگ به طور ریاضی بیان می‌کند. توصیف می‌شود (که در مورد الکترون‌های یک

پدیدهٔ دیگری که منجر به پیدایش مکانیک کوانتومی شد، امواج الکترومغناطیسی مانند نور بودند. ماکس پلانک در سال ۱۹۰۰ هنگام مطالعه بر روی تابش جسم سیاه کشف کرد که انرژی این امواج را می‌توان به شکل بسته‌های کوچکی در نظر گرفت. آلبرت اینشتین از این فکر بهره برد و نشان داد که امواجی مثل نور را می‌توان با ذره‌ای به نام فوتون که انرژی‌اش به بسامدش بستگی دارد توصیف کرد. این نظریه‌ها به دیدگاهی به نام دوگانگی موج-ذره بین ذرات زیراتمی و امواج الکترومغناطیسی منجر شد که در آن ذرات نه موج و نه ذره بودند، بلکه ویژگی‌های هر دو را از خود بروز می‌دادند. مکانیک کوانتومی علاوه بر این که دنیای ذرات بسیار ریز را توصیف می‌کند، برای توضیح برخی از پدیده‌های بزرگ‌مقیاس (ماکروسکوپیک) هم کاربرد دارد، مانند ابررسانایی و ابرشارگی.

مکانیک کوانتومی و فیزیک کلاسیک


نمایش دوگانگی موج-ذره با یک بسته موج فوتونی

اثرات و پدیده‌هایی که در مکانیک کوانتومی و نسبیت پیش‌بینی می‌شوند، فقط برای اجسام بسیار ریز یا در سرعت‌های بسیار بالا آشکار می‌شوند. تقربیاً همهٔ پدیده‌هایی که انسان در زندگی روزمره با آن‌ها سروکار دارد به طور کاملاً دقیقی توسط فیزیک نیونتی قابل پیش‌بینی است.

در مقادیر بسیار کم ماده، یا در انرژی‌های بسیار پایین، مکانیک کوانتومی اثرهایی را پیش‌بینی می‌کند که فیزیک کلاسیک از پیش‌بینی آن ناتوان است. ولی اگر مقدار ماده یا سطح انرژی را افزایش دهیم، به حدی می‌رسیم که می‌توانیم قوانین فیزیک کلاسیک را بدون این که خطای قابل ملاحظه‌ای مرتکب شده باشیم، برای توصیف پدیده‌ها به کار ببریم. به این «حد» که در آن قوانین فیزیک کلاسیک (که معمولاً ساده‌تر هستند) می‌توانند به جای مکانیک کوانتومی پدیده‌ها را به درستی توصیف کنند، حد کلاسیک گفته می‌شود.

کوشش برای نظریهٔ وحدت‌یافته

وقتی می‌خواهیم مکانیک کوانتومی را با نظریهٔ نسبیت عام (که توصیف‌گر فضا-زمان در حضور گرانش است) ترکیب کنیم، به ناسازگاری‌هایی برمی‌خوریم که این کار را ناممکن می‌کند. حل این ناسازگاری‌ها هدف بزرگ فیزیکدانان قرن بیستم و بیست‌ویکم است. فیزیکدانان بزرگی همچون استیون هاوکینگ در راه رسیدن به نظریهٔ وحدت‌یافتهٔ نهایی تلاش می‌کنند؛ نظریه‌ای که نه تنها مدل‌های مختلف فیزیک زیراتمی را یکی کند، بلکه چهار نیروی بنیادی طبیعت -نیروی قوی، نیروی ضعیف، الکترومغناطیس و گرانش- را نیز به شکل جلوه‌های مختلفی از یک نیرو یا پدیده نشان دهد.

منبع : http://fa.wikipedia.org/wiki

مکانیک کوانتومی و زیست‌شناسی

منبع : http://fa.wikipedia.org/wiki/


تحقیقات چند موسسه در آمریکا و هلند نشان داده است که بسیاری از فرایندهای زیستی از مکانیک کوانتومی بهره می‌برند. قبلا تصور می‌شد فتوسنتز گیاهان فرایندی بر پایه بیوشیمی است اما تحقیقات پروفسور فلمینگ و همکارانش در دانشگاه برکلی و دانشگاه واشنگتن در سنت لوییس به کشف یک مرحله کلیدی از فرآیند فوتوسنتز منجر شده که بر مکانیک کوانتومی استوار است. همچنین پژوهشهای کریستوفر آلتمن، پژوهشگری از موسسه دانش نانوی کاولی در هلند، حاکی از آن است که نحوه کارکرد سلولهای عصبی خصوصا در مغز که تا مدتها فرایندی بر پایه فعالیتهای الکتریکی و بیوشیمی پنداشته می‌شد و محل بحث ساختارگرایان و ماتریالیستها و زیستشناسها بود، شامل سیستمهای کوانتومی بسیاری است. این پژوهشها نشان می‌دهد که سلول عصبی یک حلزون دریایی می‌تواند از نیروهای کوانتومی برای پردازش اطلاعات استفاده کند. در انسان نیز، فیزیک کوانتومی احتمالا در فرآیند تفکر دخیل است.




چگونگی ارتباط فضاهای موازی با یکدیگر

یک ایده ناقص در مورد ارتباط فضاهای موازی با یکدیگر وجود حفره هایی می باشد که با عبور از این حفره ها می توانید وارد ابعاد دیگری شوید ولی وجود حفره و عبور از آن برای ورود به فضاهای دیگر نامحتمل بهه نظر می رسد. ولی ذرات مادی بسیار کوچک که به دلیل برخورداری از ویژگی های خود هم دارای خواص مادی و هم دارای خواص غیرمادی می باشند گزینه مناسبی برای عبور از مرز بین فضای مادی و غیرمادی (جهان موازی) می باشند این ذرات قطعا بسیار کوچکتر از فوتون ها می باشند و می توانند برخی اوقات از سرعت نور نیز عبور نمایند و نوسان سرعت انها اغلب بالاتر از سرعت نور و در حداقل خود در حد سرعت نور می باشند. این ذرات می توانند به دلیل ویژگی های خاص خود بر روی ذرات غیرمادی مجاور خود تاثیرگذاشته و از این طریق اولین جرقه های ارتباط با دنیای موازی را در کنار ما به وجود اورند.

این تاثیرات قطعا متقابل خواهد بود و استفاده از ذرات غیرمادی که دارای خواصی مشابه ذرات مادی می باشند نیز می تواند ذرات مادی نزدیک به آن را تحت تاثیر قرار دهد. در این خصوص برخلاف نظریه حفره پدیده گذر از فضای مادی به فضای غیرمادی آنی نخواهد بود بلکه برای عبور از یک فضا و وارد شدن به فضای دیگر نیازی به حضور در آن فضا نخواهد بود بلکه می توان از طریق همین تاثیرات متقابل اقدام به نفوذ به فضاهای دیگر نمود.

این موضوع علاوه بر اینکه وجود مرز بین فضاهای مختلف را نشان می دهد عامل اصلی وجود مرز را ذرات تشکیل دهنده جهان می داند و این ذرات موجود در عالم می باشد که به فضاهای موجود عینیت و واقعیت می بخشد و فضاهای موازی را می توان از طریق ذراتی که در هر فضا قابلیت حضور دارند درک نماییم و این موضوع مستلزم شناخت بیشتر ذرات بسیار کوچک می باشد که علم کوانتم به مطالعه این ذرات پرداخته  و می تواند راه گشای ما در عبور از مرزهایی باشد که امکانات بی مانندی را از سرعت و قدرت در اختیار بشر قرار خواهد داد.