فیزیک ذهن

معرفی و تشریح رشته ای جدید به نام فیزیک ذهن

فیزیک ذهن

معرفی و تشریح رشته ای جدید به نام فیزیک ذهن

کوارک ها

مدت زیادی اینطور تصور می شد که پروتونها و نوترونها ذرات بنیادی هستند و بنابراین گمان می‌رفت مثل تقسیم الکترون دیگرقابل تقسیم نبوده و دارای یک ساختار داخلی نیستند. امروزه می‌دانیم که نوکلئونها یا به عبارت دیگر پروتونها و نوترونها خود از ذرات کوچکتری ساخته شده‌اند که کوارک نامیده می‌شوند. تا به حال ۶نوع کوارک متفاوت شناسایی شده‌اند با این همه فقط دو نوع آنها در تشکیل مواد پایدار معمولی نقش مهمی دارند که عبارت از کوارک u و کوارک D هستند، U علامت اختصاری برای بالا (UP) و D علامت اختصاری برای پایین (down) می‌باشد .

اگر بار اکتریکی یک الکترون را منفی ۱ فرض کنیم (۱- = الکترون) کوارک u دارای بار الکتریکی ۳/۲+ و کوارک d داری بار ۳/۱- می‌باشد. پروتون که دارای بار مثبت است از ۲ کوارک u و یک کوارک d تشکیل شده است از این طریق است که بار آن حاصل می شود: ۱+=۳/۲+۳/۲+۳/۱- ، برعکس یک نوترون دارای ۲کوارک D و یک کوارک U بوده و با ر آن برابر است با ۱- = ۳ /۲ + ۳/۱ – ۳/۱-.

ویژگی کوارکها

اگر روابط و نسبتها در اتمها که در مقایسه با کوارکها بزرگ هستند مهم و چشمگیر است، این روابط در کوارکهای کوچک مسلماً مهمتر هستند. مثلا کوارکها هیچگاه به تنهایی نقشی را به عهده ندارند بلکه همیشه در گروههای ۲ و ۳ تایی هستند ذراتی که از ۲کوارک تشکیل می‌شوند مزون نام دارند. ذراتی را که از ۳ کوارک دارند باریون می‌نامند. کوارکها در کنار بار الکتریی که دارند خاصیت مرموز دیگری نیز دارا می‌باشند که رنگ خوانده می‌شود. کوراکها از این جهت به قرمز ، سبز و آبی طبقه بندی می‌شود، البته از این طبقه بندی باید رنگهای حقیقی را تصور کرد بلکه منظور نوع بار الکتریکی آنهاست. بنابراین ذرات آزاد معلق در طبیعت باید همیشه دارای رنگ خنثی و به عبارت دیگر سفید باشند.

یک کوارک قرمز یک کوارک سبز و یک کوارک آبی یک گروه سه تایی مثلا یک پروتون می‌سازد. همانطور که ترکیب رنگهای رنگین کمان رنگ سفید را بوجود می‌آورد، ازترکیب رنگهای سه گانه کوارک نیز سفید بدست می‌آید. به این ترتیب یک ذره سفید مجاز و پایدار تشکیل می‌شود. امکان دیگر این است که یک کوارک قرمز با یک ضد کوارک که رنگ ضد قرمز دارد یک زوج بسازند، قرمز و ضد قرمز همدیگر را خنثی کرده ، رنگی خنثی را بوجود می‌آورند. به هرحال چون این گروههای دوتایی (مزونها) از ماده و ضد ماده ایجاد شده‌اند، خیلی سریع فرو می‌پاشند، به این جهت مزونها پایدار نیستند.

آیا کوارکها را می‌توان مشاهده کرد؟

روشن است که کوارکها را نمی‌توان مشاهده کرد، بلکه می‌شود وجود آنها را مثل هسته اتمها از طریق آزمایشهای فراوان پیچیده اثبات نمود، برای این کار مثل آنچه که رادرفورد ۷۵ سال پیش برای شناسایی هسته اتم انچام داد عمل می‌شود و پروتونها یا الکترونهای بسیار پر شتاب مورد اصابت قرار می‌گیرند. بیشتر الکترونها در این آزمایش به ندرت تغییر مسیر می‌دهند، ولی تعدادی از آنها کاملا از مدار خود خارج می‌شوند درست مثل اینکه به گلوله‌های سخت و کوچکی در داخل پروتونها برخورد کنند. این گلوله‌های بسیار کوچک همان کوارکها هستند که در جستجویشان بوده‌ایم یک بررسی دقیق نشان داده که پروتون در مجموع از سه سنگ بنای اولیه این چنین تشکیل شده است.

کوارکها هیچگاه در طبیعت به عنوان ذرات مستقل و آزاد وجود ندارند. ایجاد ذرات متشکل از ۲ کوارک یا به عبارت دیگر (مزونها) ، البته ممکن است، ولی این ذرات پایدار نیستند. برعکس گروههای سه تایی یا به زبان دیگر پروتونها و نوترونها ساختارهایی بسیار پایدار هستند. انسان کره زمین و در واقع کهکشان راه شیری عملاً از ۳ سنگ بنای اولیه ایجاد شده‌اند که عبارت ازکوارکهای U ، کوارکهای D و الکترونها می‌باشند. کوارکها ، نوکلئونها را می‌سازند و آنها به یکدیگر متصل شده هسته اتمها را بوجود می‌آروند.
هسته‌ها و الکترونها دراتحاد با یکدیگر اتمها را ایجاد می‌کنند و اتمها نیز با پیوستن به یکدیگر مولکولهای کوچک و بزرگ از قبیل مولکولهای آب یا سفیده تخم مرغ را می‌سازد. میلیاردها مولکول سلولهای بدن ما را بوجود می‌آورند و هر انسان در بدن خود میلیاردها سلول دارد، اما با تمام تفاوتهایی که انسانها ، جانوران ، گیاهان ، سیاره‌ها و یا ستارگان با یکدیگر دارند باز هم تمام آنها فقط از ۳ ذره زیر بنایی ساخته شده‌اند که عبارتند از کوراکهای U ، کوارکهای D و الکترونها.

جرم دقیق کوارک

کشف ذرات زیر اتمی جدید باعث سر در گمی دانشمندان شده است. این ذرات عجیب و ناشناخته تئوری پردازان را واداشته است تا در نظریات خود در مورد نیروهای قوی که ذرات زیر اتمی را در اتمها کنار یکدیگر نگه می‌دارد، تجدیدنظر کنند. احتمالاً این ذره جدید که DS2317 نام گرفته ، صورت غیر متداولی از کورکها است. کوارکها ذرات بسیار ریزی هستند که در دسته‌های سه تایی وجود دارند و اجزای سازنده پروتونها و نوترونها هستند. شاید این ذره جدید ناشناخته کوارکی باشد که حول کوارک دیگر در حال چرخش است، شاید هم مولکول جدیدی است که از چهار کوارک ساخته شده است.

مارچللو گئورگی از دانشگاه پیزای ایتالیا و اعضای گروهش پس از صرف وقت سه ساله و جمع آوری اطلاعات از آشکارساز بابار (BaBar) مرکز شتاب دهنده خطی استنفورد (Slac) در کالیفرنیا با DS 2317 مواجه شدند. وقتی که Slac الکترون را با پوزیتون که ضد ماده الکترون محسوب می‌شود، برخورد می‌دهد، آشکارساز باربار تعداد زیادی از ذراتی که در نتیجه این برخورد بوجود می‌آیند را شناسایی می‌کند. گئورگی می‌گوید: «ما از نتایج این آزمایشات بسیار شگفت زده شدیم، اما چیزی که بیش از همه باعث اعجاب ما شد، جرم این ذرات است. جرم این ذرات از مقدار پیش بینی شده کمتر و در عین حال بسیار دقیق و مشخص بود.

جرم بسیاری از این ذرات پرانرژی دقیقاً مشخص نیست و با کمی عدم قطعیت همراه است. اما وزن DS 2317 دقیقاً مشخص است و مقدار آن برابر ۲۳۱۶ مگاالکترون ولت است. الکترون ولت واحدی است که فیزیکدانان برای اندازه گیری مقدار جرم و انرژی ذرات بکار می‌برند. استیا ایچتن (Estia Eichten) نظریه پرداز فیزیک نظری از آزمایشگاه شتاب دهنده ملی فرمی در باتاویای ایلینویز می‌گوید، شاید این جرم دقیق به محققین کمک کند تا ماهیت دقیق نیرویی که اتمها را در کنار یکدیگر نگه می‌دارد، درک کنند. از آنجایی که در مقیاسهای کوچک جرم و انرژی معادل یکدیگرند، دانستن جرم یک کوارک جدید می‌تواند ما را به شناخت نیروهای قوی که در داخل ذرات حاکم است، راهنمایی کند.

طی تحقیقاتی که بعدها صورت گرفت، تصور می‌شد که DS 2317 از کوارکهای سنگین و ناشناخته‌ای تشکیل شده است. دیوید سینابر و یکی از متخصصین فیزیک انرژی بالا در دانشگاه کورنل در ایتاکای نیویورک می‌گوید: «قسمت عمده‌ای از اطلاعاتمان در مورد نیروهای قوی از بررسی کوارکهای سبکتر حاصل شده است. اما امکان دارد با بررسی کوارک سنگینتر اطلاعات جدیدی کسب کنیم.»

انواع کوارک

کوارکها در شش گروه مختلف جای می‌گیرند: بالا ، پایین ، جذاب ، عجیب ، زیر و رو. دسته‌های سه تایی از کوارکهای بالا و پایین که جزء سبکترین و معمولی‌ترین کوارکها محسوب می‌شوند، پروتونها و نوترونهای مواد عادی را که اطراف ما را فرا گرفته است تشکیل می‌دهد. اما ممکن است DS 2317 از دو کوارک تشکیل شده باشد و ذره کمیابی به نام مزون را بوجود آورده باشد. ایچتن می‌گوید این مزون ممکن است تا حدودی شبیه یک اتم باشد. اتمی که در آن یک کوآرک سبک «ضد ـ عجیب» (anti-Strange) حول یک کوآرک سنگینتر «جذاب» (Charm) در حال چرخش است.

کوارک چیست؟

اما سایر محققین در تفسیر پدیده‌های مشاهده شده ، نظریات پیچیده‌تری را ابراز می‌کنند. جاناتان رزنر فیزیکدان نظری دانشگاه شیکاگو می‌گوید احتمال دارد که ذره جدید حاوی جفتهایی از کوارکهای مزدوج باشد. وجود مولکولهایی حاوی چنین ذرات زیر اتمی مدتها قبل پیش بینی شده بود. سینابرو می‌گوید: «ما تاکنون هیچ شاهدی مبنی بر وجود اینگونه ذرات نداشتیم. اما اگر این شیء وجود داشته باشد، واقعاً جای تعجب است.» محققین Slac در مرکز سنکروتون انرژی بالای دانشگاه کورنل و سازمان تحقیقات شتاب دهنده انرژی بالا در ژاپن ضمن کنکاش در اطلاعات قدیمی ، در صددند نظریات خود را در مورد ذراتی شبیه DS 2317 بیازمایند.

شیمی مدیون پروتون

نوترونها و پروتونها از ذراتی ساخته شده‌اند که کوارکهای بالا و پایین نامیده می‌شوند. هر پروتون شامل دو کوارک بالا و یک کوارک پایین است، در حالی که هر نوترون دارای دو کوارک پایین و یک کوارک بالا است. کوارکهای پایین کمی سنگینتر از کوارکهای بالا هستند و به همین دلیل وزن نوترونها از پروتونها بیشتر است. بار هر کوارک بالا برابر دو سوم بار مثبت است و هر کوارک پایین دقیقا یک سوم بار مثبت را با خود دارد. به همین دلیل پروتون دارای یک بار الکتریکی مثبت است، در حالی که نوترونها خنثی هستند و باری ندارند.

در عین حال ما هنوز هم جرم دقیق کوارکها را نمی‌دانیم. به همین دلیل دانشمندان سعی دارند ضمن آزمایشات مختلف جرم آنها را دریابند. در عین حال نظریه پردازان نیز سعی دارند قطعات حاصل از برخورد ذرات مختلف را بررسی کرده و سرعت انجام واکنشهای مختلف را محاسبه کنند. آنها امیدوارند با این روش بتوانند به ساختار یک هسته اتم دست نخورده دست یافته و دریابند چه میزان از اختلاف در خواص کوارکهای بالا و پایین از اختلاف جرمشان ناشی می‌شود و چه مقدار از این اختلاف بخاطر تفاوت در بارهای الکتریکی است.

آنها امیدوارند با این آزمایشات جرم دقیق کوارکها را دریابند. بیراون کولک فیزیکدان نظری دانشگاه آریزونا می‌گوید: «هم آزمایشات انجام شده و هم تفسیرهای نظری ارائه شده در این مورد بسیار پیچیده است و بنابراین لازم است هم از نتایج آزمایشات و هم تفسیرهای نظری کمک گرفت و با تلفیق نتایج حاصل از این آزمایشات اطلاعات مهمی در مورد جرم کوارکها بدست آورد.» اختلاف بین کوارکهای بالا و پایین به این معنی است که اگر یک نوترون را به حال خود رها کنیم به یک پروتون تبدیل می‌شود. اما این سرنوشت نهایی نوترونها نبود.

این ذرات با قرار گرفتن در کنار الکترونها که بار منفی دارند، می‌توانند اتمهای هیدروژن را بوجود آورند که ماده سوختی اولیه ستارگان محسوب می‌شود. ادوارد استفنسون که یکی از فیزیکدانان دانشگاه ایندیانا است می‌گوید: «دنیای مملو از پروتون به این معنی است که مقدار زیادی هیدروژن در اختیار داریم. بدون در اختیار داشتن پروتون ، شیمی به آن صورتی که امروز می‌شناسیم، ممکن نبود.» البته باید در نظر داشت همین اختلاف کم در جرم این کوارکها نتایج بسیاری را در پی داشته است. اخیراً یک گروه از دانشمندان دانشگاه ایندیانا دو هسته دوتریم را به هم برخورد دادند.

دوتریم نوعی اتم هیدروژن است که در هسته خود یک پروتون و یک نوترون دارد. گروهی دیگر نیز در دانشگاه اوهایو با استفاده از نوترون و پروتون واکنش همجوشی هسته‌ای انجام دادند. طی هر دو این آزمایشات ذراتی حاصل شد که آنها را پیون می‌نامند. این دانشمندان معتقدند ایجاد پیون نشانه عدم تقارن بار است که از اختلاف در اجزای تشکیل دهنده پروتونها و نوترونها ناشی می‌شود. این اختلاف در جرم عامل اصلی ترکیب اجزای عالم است.

کوارک در طبیعت

قبل از کشف کوارک توسط مورای ژل مان تصور می‌شد که پروتونها و نوترونها مانند الکترونها غیر قابل‌ تقسیم هستند، ولی اکنون می‌دانیم نوکلئونها (پروتونها و نوترونها) تجزیه‌پذیر بوده و از ذرات کوچکتری به نام کوارک تشکیل شده‌اند.

کوارکها در طبیعت

کوارکها‌ هیچگاه در طبیعت به عنوان ذرات مستقل و آزاد وجود ندارند. مزون‌های π از یک کوارک و یک ضد کوارک تشکیل می‌شوند، که آنتی کوارک (ضد کوارک) با یک خط تیره افقی (علامت منفی) بالای حرف مربوطه مشخص می‌گردد. چون این مزونها از ماده و ضد ماده تشکیل می‌شوند، خیلی سریع فرو می‌پاشند. ایجاد ذرات متشکل از ۲ کوارک یا به عبارت دیگر مزونها البته ممکن است، ولی این ذرات پایدار نیستند. برعکس گروههایی سه ‌تایی یا به زبان دیگر پروتونها و نوترونها ساختارهایی بسیار پایدار هستند.

کوارک چیست؟

انسان ، کره زمین و در واقع کهکشان راه شیری عملا از سه سنگ بنای اولیه ایجاد شده‌اند، که عبارت از کوارکها‌ی U و کوار‌ها‌ی D و الکترونها می‌باشند. کوارکها‌ ، نوکلئونها را می‌سازند و آنها به همدیگر متصل شده ، هسته اتمها را بوجود می‌آورند. هسته‌ها و الکترونها در اتحاد با یکدیگر اتمها را ایجاد می‌کنند و اتمها نیز با پیوستن به یکدیگر مولکولهای کوچک و بزرگ از قبیل مولکولهای آب یا سفیده تخم مرغ را می‌سازند.

میلیاردها مولکول سلولهای بدن ما را بوجود می‌آورند و هر انسان در بدن خود میلیاردها سلول دارد. اما با تمام تفاوتهایی که انسانها ، جانوران ، گیاهان ، سیارات و یا ستارگان با یکدیگر دارند، باز هم تمام آنها فقط از سه ذره زیربنایی ساخته شده‌اند، که عبارتند از: کوارکها‌ی U و کوارکها‌ی D و الکترونها.

آیا کوارکها‌ را می‌توان مشاهده کرد؟

روشن است که کوارکها‌ را نمی‌توان مشاهده کرد، بلکه می‌شود وجود آنها را مثل هسته اتمها ، از طریق آزمایشهای فراوان پیچیده اثبات نمود. برای این کار مشابه آنچه که رادرفورد ۷۵ سال پیش برای شناسایی هسته اتم ، انجام داد، عمل می‌شود و پروتونها با الکترونهای بسیار پر شتاب ، مورد اصابت قرار می‌گیرند. بیشتر الکترونها در این آزمایش ، به ندرت تغییر مسیر می‌دهند، ولی تعدادی از آنها کاملا از مدار خود خارج می‌شوند، درست مثل اینکه به گلوله‌های سخت و کوچکی در داخل پروتونها ، برخورد کنند. این گلوله‌های بسیار کوچک همان کوارک‌ها‌ هستند، که در جستجویشان بوده‌ایم. یک بررسی دقیق ، نشان داده که پروتون در مجموع از سه واحد سنگ بنای اولیه این چنینی تشکیل شده است.

نیروهای بنیادی اولیه

بین ذرات بنیادی چهار نیرو عمل می‌کنند که آنها را نیروهای بنیادی یا اولیه می‌نامند.
نیروی پرقدرت کوارک: نیروی پرقدرت کوارک که نیروی رنگ نیز نامیده می‌شود، از جدا شدن بیش از حد کوارکها‌ی داخل هسته از یکدیگر و یا حتی از پرت شدن آنها به خارج جلوگیری می‌کند. نیروی پر قدرت کوارک یا نیروی قوی ، از طریق ذرات مبادله کننده یا به اصطلاح گلوئونها ، که بین کوارکها‌ در پرواز هستند، انتقال می‌یابد. این نیرو مانند چسب ، پیوستگی بین کوارکها را تضمین می‌کنند. نیروی هسته‌ای که پروتونها و نوترونها را در هسته اتم به هم پیوسته نگاه می‌دارد، در واقع نیروی بنیادی نیست، بلکه نیرویی است که از نیروی رنگ کوارکها‌ (یعنی قویترین نیرویی که به آن اشاره می‌شود)، بدست می‌آید.

برهمکنش الکترومغناطیسی: این نیرو ، وقتی که صحبت از بارهای الکتریکی به میان می‌آید، ظاهر می‌شود. یک ذره دارای بارالکتریکی مثبت ، بوسیله یک ذره مثبت دیگر ، دفع و به سوی یک ذره دارای بار الکتریکی منفی ، جذب می‌شود. این نیرو توسط فوتونها یا ذرات نوری مبادله می‌شود و در نتیجه این ذرات نوری که بین ذرات باردار در پرواز هستند، به یکدیگر متصل می‌شوند.

برهمکنش ضعیف هسته‌ای: بسیاری از ذرات ، نسبت به هیچ یک از دو نیروی یاد شده در بالا ، یعنی نیروی قوی کوارک و نیروی الکترومغناطیسی واکنش نشان نمی‌دهند. از آن میان ذراتی هستند که فاقد بار الکتریکی و رنگ هستند. برای این گونه ذرات یک نیروی بنیادی دیگر وجود دارد. که در فاصله‌های خیلی خیلی کم خود را نشان می‌دهد و بدون استثنا بر روی همه ذرات اثر می‌گذارد. این نیرو که نیروی ضعیف نام دارد، توسط ویکونها منتقل می‌شود.

نیروی جاذبه یا گرانش: این نیرو تمام ذراتی را که دارای جرم هستند، جذب می‌کند، ولی در مقایسه با سه نیروی قبلی ، آن قدر ضعیف است، که می‌توان آن را نادیده گرفت. از آنجایی که این نیرو در فاصله‌های زیاد کارگر است، در علم ستاره شناسی دارای اهمیت می‌باشد.

واقعیت کوانتومی: ما فقط چند هزار بار زندگی می‌کنیم


نظریه کوانتوم پس از گذشت یک قرن از ابداع آن، هنوز یک شاهکار علمی تمام عیار است، ولی مشکل بزرگی در آن نهفته که باورش کمی سخت است: فیزیک‌دانان هنوز نمی دانند که چطور باید از آن استفاده کنند!

 مجید جویا: به نظر می رسد که یک قرن کافی نیست. صد سال پیش از این، اولین کنفرانس جهانی فیزیک در بروکسل بلژیک برگزار شد. موضوع عمده بحث این بود که با نظریه جدید و عجیب کوانتوم چکار می‌توان کرد؛ و این که آیا می‌توان آن را با تجربیات زندگی روزمره ترکیب کرد و به یک تعریف منطقی از جهان ما دست یافت یا خیر.

این سوالی است که به گزارش نیوساینتیست، بعد از گذشت یک قرن، هنوز هم ذهن فیزیکدان‌ها را به خود مشغول کرده است. ذرات کوانتومی مانند اتم‌ها و مولکول‌ها از این امکان غریب برخوردارند که در آن واحد، در دو مکان متفاوت ظاهر شوند؛ همزمان به صورت ساعتگرد و پادساعتگرد بچرخند؛ و غریب‌تر از همه اینکه حتی از فاصله‌ای به اندازه نیمی از دنیا، بدون لحظه‌ای درنگ بر هم تاثیر بگذارند.

ولی اینجا یک مساله وجود دارد، ما هم از اتم‌ها و مولکول‌ها تشکیل شده‌ایم، پس چرا نمی‌توانیم هیچ یک از این کارها را انجام دهیم؟ این سوالی است که هاروی براون از دپارتمان فلسفه علم در دانشگاه هاروارد، درگیر ان است: «مکانیک کوانتوم در کجا متوقف می‌شود؟»

به نظر می‌رسد به رغم اینکه هنوز پاسخی برای این سوال یافت نشده، اما تلاش برای یافتن این پاسخ، بی‌پاداش نبوده است. مثلا سبب پیدایش حوزه جدیدی از دانش کوانتوم شده که توجه صنایع های‌تک و جاسوس‌های دولتی را به خود جلب کرده است. یک زاویه حمله جدید در تلاش برای یافتن نظریه نهایی فیزیک را در منظر دید ما قرار می‌دهد، و شاید حتی منشا پیدایش جهان را نیز برای ما آشکار سازد. با در نظر گرفتن این که روزی منتقدین کوانتوم (مانند اینشتین) این نظریه را «بالش لطیفی» می‌دانستند که تنها به کار خوابیدن فیزیک‌دانها می‌آید؛ این نتایج دست کم برای یک بالش بسیار درخشان بوده‌اند.

از بد حادثه برای اینشتین، نظریه کوانتوم به یک شاهکار بدل شد. هنوز هیچ آزمایشی پیش‌بینی‌های آن را رد نکرده و می‌توانیم بپذیریم که راه خوبی برای توصیف عملکرد جهان در مقیاس بسیار کوچک است. و خوب فقط یک مشکل دارد: این یعنی چه؟

فیزیکدان‌ها تلاش دارند تا پاسخ را «تفسیر» کنند: تفکرات فلسفی کاملا سازگار با آزمایش‌هایی که در پس نظریه کوانتوم نهفته‌اند. به گفته ولاتکو ودرال که وقتش را بین دانشگاه آکسفورد و مرکز فناوری‌های کوانتوم در سنگاپور تقسیم می‌کند؛ «دریایی از تفاسیر وجود دارد».

در طول تاریخ، هیچ نظریه علمی دیگری نبوده که بتوان از چنین زوایای متفاوتی به آن نگریست. چگونه چنین چیزی ممکن است؟
برای مثال چیزی را که امروزه به نام تعبیر کپنهاگ می‌شناسیم، در نظر بگیرید. این تفسیر که توسط دانشمند دانمارکی نیلز بور ارائه شده است، چنین بیان می‌کند که هر تلاشی برای صحبت در مورد مکان یک الکترون در اتم، بدون اندازه‌گیری آن بی‌معنی است. فقط زمانی می‌توان هر ویژگی ذرات را یک صفت فیزیکی نامید و گفت که آنها در عالم واقع وجود دارند که بتوان با یک ابزار غیر کوانتومی یا «کلاسیک»؛ آن ذرات را مشاهده و با آنها ارتباط برقرار کرد. 

بعد از آن تفسیر «دنیاهای متعدد» مطرح می‌شود، که در آن غرابت کوانتوم به این ترتیب توضیح داده می‌شود که هر چیزی که در جهان ما وجود دارد، در هزاران دنیای موازی دیگر نیز موجود است، و وجودی چندگانه دارد. یا شاید شما تفسیر بروگلی-بوهم را ترجیح دهید، که در آن نظریه کوانتوم ناقص فرض می‌شود: ما با برخی خصوصیات پنهان مواجهیم که اگر آنها را می‌دانیتسم، همه چیز آشکار می‌شد.

و بسیاری دیگر از این دست تفاسیر وجود دارند، فهرستی از تفاسیر که تمامی ندارد. در صد سال گذشته، باغ وحش کوانتوم به جایی شلوغ و پر سر و صدا مبدل شده است. ولی در این میان، تنها چند تفسیر هستند که برای فیزیکدان‌ها اهمیت دارند:

کپنهاگ شگفت انگیز
محبوب‌ترین این تفاسیر، تفیسر کپنهاگ بور است. عمده دلیل محبوبیت آن، این است که فیزیکدان‌ها نمی‌خواهند خود را با فلسفه درگیر کنند. می‌توان از ابهامات این تفسیر (مانند اینکه دقیقا چه چیزی انداه گیری را شکل می‌دهد، و یا چرا باید تغییری در بافت واقعیت ایجاد کند) چشم‌پوشی کرد تا به یک پاسخ مفید از نظریه کوانتوم دست یافت.

به همین دلیل است که برخی اوقات، کاربرد بی‌سوال تفسیر کپنهاگ، به نام تفسیر «ساکت شو و حساب کن» نامیده می‌شود. ودرال می‌گوید: «با دانستن این که اکثر فیزیکدان‌ها می‌خواهند فقط محاسبات را انجام دهند و نتایج را اعمال کنند، اکثر آنها در گروه ساکت شو و حساب کن قرار می‌گیرند».

ولی این رویکرد دو مشکل دارد. اول، هیچ گاه نمی‌تواند چیزی در مورد طبیعت بنیادین واقعیت به ما بیاموزد. برای نیل به این مقصود باید به دنبال جاهایی گشت که در آنها نظریه کوانتوم صادق نیست.

دوم، کار در درون یک چارچوب خودساخته، به این معنی است که یافتن کاربردهای جدید برای نظریه کوانتوم چندان محتمل نیست. چشم اندازهایی که مکانیک کوانتوم در دیدرس ما قرار می‌دهد، می‌تواند راهگشای ایده‌های نو باشد. ودرال می‌گوید: «اگر به حل معماهای متفاوت می‌پردازید، برایتان مفید خواهد بود اگر با تفاسیر متفاوتی آشنا باشید».

در قلب این حوزه، پدیده درهم‌تنیدگی قرار دارد که در آن، داده‌ها در مورد ویژگی‌های یک دسته ذرات کوانتومی، بین آنها به اشتراک گذاشته می‌شود. نتیجه چیزی است که اینشتین «حرک شبح وار در دوردست» نامیده بود: اندازه‌گیری یک ویژگی از یک ذره، همزمان بر صفات شرکای درهم‌تنیده آن تاثیر می‌گذارد، حال هرچقدر از هم فاصله داشته باشند.

پدیده درهم‌تنیدگی بنیادی از محاسبات کوانتوم را بنا نهاده که در آن، تنها یک اندازه‌گیری می‌تواند به شما پاسخ هزاران و شاید میلیون‌ها محاسبه را که به طور موازی با ذرات کوانتوم انجام شده‌اند بدهد؛ رمزنگاری کوانتوم نیز از پیامدهای آن است، حوزه‌ای که از داده‌ها با استفاده از طبیعت اندازه‌گیری‌های کوانتوم محافظت می‌کند.

هر دوی این فناوری‌ها، توجه دولت‌ها و صنایع را به خود جلب کرده‌اند، که می‌خواهند بهترین فناوری‌ها را در اختیار داشته باشند، و مانع از دستیابی رقبا و دشمنان خود به آنها شوند. ولی فیزیکدان‌ها عملا بیشتر مجذوب چیزهایی می‌شوند که این پدیده در مورد طبیعت واقعیت به ما می‌گوید. به نظر می‌رسد که یک مفهوم آزمایشات داده‌های کوانتوم این باشد که داده‌هایی که در ذرات کوانتوم نگهداری می‌شوند، در بنیاد واقعیت قرار می‌گیرند.

طرفداران تفسیر کپنهاگ مانند زایلینگر، سیستم‌ها را به مثابه حامل‌های داده می‌نگرند، و اندازه‌گیری با استفاده از ابزارهای کلاسیک اهمیتی برایشان ندارد: این تنها یک راه برای ثبت تغییری در محتوای داده سیستم است. زایلینگر می‌گوید: «اندازه‌گیری، داده‌ها را به روز می‌کند». این تمرکز بر روی داده‌ها به عنوان عنصر بنیادین واقعیت، برخی را نیز برآن داشته تا خود جهان را یک کامپیوتر کوانتومی بزرگ بدانند.

دنیاهای چندگانهبا این وجود، به رغم تمام گامهایی که در نتیجه تفسیر کپنهاگ برداشته شده، خیلی از فیزیکدان‌ها می‌خواهند سوی دیگر آن را نیز ببینند.

فرض طبیعت اشیا به عنوان مقیاس جهان، به منتقدین تفسیر کپنهاگ هم بهانه‌های خوبی داده است. اگر فرایند اندازه‌گیری با استفاده از ناظر کلاسیک برای خلق واقعیتی که مشاهده می‌کنیم بنیادی است، چه چیزی مشاهدات ایجادکننده محتوای جهان را انجام داده است؟ به گفته براون، «شما واقعا نیاز به یک ناظر بیرون از سیستم دارید، ولی طبق تعریف هیچ چیزی بیرون از جهان وجود ندارد».

به همین دلیل است که اخترشناسان بیشتر علاقه‌مند به تفسیری هستند که در اواخر دهه 1950 توسط هیو اورت از دانشگاه پرینستون مطرح شد. طبق تفسیر «دنیاهای چندگانه» او از مکانیک کوانتوم، واقعیت به مفهوم اندازه‌گیری وابسته نیست. در عوض، هزاران احتمال متفاوت ذاتی هر سیستم کوانتوم، هریک در دنیای خود ظاهر می‌شوند. دیوید دوچ از دانشگاه آکسفورد که نقشه‌های اولین کامپیوتر کوانتوم را طراحی کرده، می‌گوید که اکنون تنها می‌تواند به عملیات کامپیوتری به صورت جهان‌های چندگانه بیندیشد. برای او هیچ تفسیر دیگری معنی ندارد.

البته این تفسیر هم منتقدین خود را دارد. تیم مادلین، از دپارتمان فلسفه علم دانشگاه راتگرز نیوجرسی، نمی‌تواند بپذیرد که «دنیاهای چندگانه» توانسته باشد چارچوب خوبی فراهم کند که بتوان بر مبنای آن توضیح داد که چرا احتمال رخداد برخی از خروجی‌های کوانتوم بیش از بقیه است.  

به گفته مادلین، دنیاهای چندگانه بیان می‌دارد که با توجه به چندگانه بودن دنیاها، تمامی خروجی‌های ممکن اتفاق می‌افتند، ولی هیچگاه توضیح نمی‌دهد که چرا ناظران همواره محتمل‌ترین خروجی ممکن را می‌بینند. امری که از دید وی «یک مشکل خیلی عمیق است».

هرچند به گفته دوچ این مشکل با کار نظریه‌پردازان پیرو این تفسیر حل شده، اما مباحثات وی پیچیده‌اند و هنوز نتوانسته‌اند همه را قانع کنند. ولی مسئله پیچیده‌تر، چیزی است که طرفداران دنیاهای چندگانه، «اعتراض ناظر دیرباور» می‌نامند. مفهوم آشکار دنیاهای چندگانه این است که چندین نسخه از ما وجود دارند، و برای مثال الویس پریسلی هنوز در دنیاهای دیگر در حال اجرای برنامه است. هضم این مفهوم کار ساده‌ای نیست!

دوچ و براون هر دو ادعا دارند که دنیاهای موازی، توجه خیلی از اخترشناسان را به خود جلب کرده است. بحث‌ها در مورد نظریه ریسمان، کیهان شناسی و اخترشناسی رصدی، برخی از اخترشناسان را بر آن داشته تا ادعا کنند که ما در یکی از دنیاهای چندگانه زندگی می‌کنیم.

براون اذعان می‌کند: «ما در وضعیتی گرفتار شده‌ایم که احتمالا نمی‌توانیم به طور تجربی بین اورت و بروگلی-بوم یکی از انتخاب کنیم. البته این امر دلیلی برای بدبینی نیست. فکر می‌کنم که پیشرفت قابل ملاحظه‌ای رخ داده است. خیلی‌ها می‌گویند که به دلیل نبود یک آزمایش قاطع متمایز کننده هیچ کار نمی‌توانیم انجام دهیم، ولی این دقیقا همان امری است که سبب می‌شود که برخی از تفاسیر از دیگران بهتر باشند».

هرچند ودرال خود را در گروه دنیاهای چندگانه قرار می‌دهد، ولی به باور او، در انتخاب یک گروه تنها مسئله علایق قرار دارد. «در همه این موارد، نمی‌توانید تمایز تجربی بین آنها قائل شوید، در نتیجه فقط باید از غرایز خود پیروی کنید».

این ایده که فیزیکدان‌ها تنها از روی هوس یکی از این تفاسیر را انتخاب کنند، به نظر غیر علمی می‌آید، ولی تاکنون که ضرری نداشته است!

نظریه کوانتوم دنیا را از طریق محصولات جانبی خود تغییر داده است، (مثل ترانزیستور و لیزر) و شاید چیزهای دیگری هم در راه باشند. فیزیکدان‌ها با داشتن تفاسیر متفاوت برای پیگیری، ایده‌هایی برای انجام آزمایشها به نحوی متفاوت می‌یابند. به گفته ودرال، داشتن ذهنی باز در مورد معنی نظریه کوانتوم شاید بتواند حوزه جدیدی را در فیزیک باز کند.

شگفتی جدید در فیزیک کوانتوم: ارتباط دو فوتون از ورای زمان



می دانید که فیزیک کوانتوم شاخه ای عجیب و غریب از علم است، ولی قطار دانش مدام ما را در سرزمین عجایب جلوتر می برد. این بار تیمی از دانشمندان، از در هم تنیدگی کوانتومی استفاده کرده اند تا به دو فوتون "که هرگز در یک زمان وجود نداشته اند" امکان برقراری ارتباط با یکدیگر را بدهند. وقتی می نویسیم "ارتباط دو فوتون از ورای زمان" یعنی مدتی پس از نابودی اولی، دومی به وجود آمده و هرگز هم زمان در دنیا نبوده اند. اما داستان چیست؟

در هم تنیدگی کوانتومی یک پدیده قدیمی و رازآلود با این معنا است که برخی ذرات، مثل فوتون ها و الکترون ها، می توانند "یک بار" بر همدیگر اثر متقابل بگذارند ولی همچنان حتی پس از جدایی، کیفیت هایی نظیر چرخش یا قطبی شدگی شان مشترک باشد و "با تغییر حالت یکی، دیگری نیز تغییر کند." این چیزی بود که باعث شد اینشتین به ایده "رفتار شبح وار در فاصله فیزیکی" اشاره کند، زیرا تغییرات در یک نقطه بلافاصله در نقطه دیگر بروز می یافتند.

اما در این پژوهش جدید دانشمندان پا را فراتر گذاشته اند و جفت فوتونی را خلق کرده اند که در فضا (مکان) با یکدیگر در هم تنیدگی نداشته اند، بلکه تنها در زمان چنین بوده اند. البته در واقعیت، این فرآیند نه از 2 که از 4 فوتون تشکیل شده.

تیم پژوهشی ابتدا با استفاده از لیزر، 2 فوتون را در هم تنیدند -که آنها را P1  و P2 نامگذاری می کنیم. سپس میزان پولاریزاسیون P1 را اندازه گرفته و آن را نابوده کردند. در گام بعد جفت فوتون دوم یعنی P3 و P4 خلق و از هم جدا شدند. سپس P2  (از مرحله اول) با P3 در هم تنیده گردید و در ادامه آن طور که تیم تحقیقاتی می گوید، مشخص شد که P4 از خودش در هم تنیدگی رفتاری مشابه با P1 را بروز می دهد و این در حالی بود که این دو هرگز همزمان وجود نداشته اند.

محققین این پروژه در این باره چنین توضیح داده اند:

در سناریویی که ما در اینجا داشتیم، سنجش ویژگی های فوتون آخر بر روی توصیف فیزیکی فوتون اول تاثیر گذاشت، حتی قبل از اینکه فوتون آخر وجود داشته باشد. "این رفتار شبح وار" نشان از الگو گرفتن آن، از گذشته سیستم دارد. دیدگاه دیگری که می توان داشت این است که سنجش اولین فوتون، بی درنگ ویژگی های فوتون آخر را تعیین می کند که در این مورد، فعالیت مورد نظر مربوط به آینده بخشی از سیستم است که حتی هنوز خلق هم نشده.
این اولین بار است که دانشمندان در عمل نشان می دهند که فعالیت های کوانتومی در فاصله ای نسبت به هم، نه فاصله مکانی بلکه حتی فاصله زمانی نیز قابل انتقال هستند. البته هنوز واقعاً روشن نیست که چنین دستاوردی یعنی مراوده فوتون ها از ورای سنگ قبر (!) به چه کار خواهد آمد ولی این، چیزی از شگفت انگیز بودن یافته جدید کم نمی کند.

  توضیح در هم تنیدگی کوانتومی: در این مبحث، خواص مکانیکی دو ذره که با هم در اندرکنش بوده و سپس جدا شده اند، با هم جفت می شود. به این صورت با ایجاد تغییر فیزیکی در یکی، دیگری نیز حتی در فاصله ای دور دچار تغییر حالت می شود. حالا در این آزمایش و کشف جدید، ذره اول پیش از به وجود آمدن ذره دوم از بین رفته ولی سنجش صورت گرفته بر روی ذره اول (که نابود شده) اثر خودش را روی حالت ذره دوم نشان می دهد!

برای درک بهتر موضوع به این توضیح توجه نمایید:

بر اساس تفسیر کپنهاگی از مکانیک کوانتومی، حالت دو ذره جفت شده تا زمان مشاهده نامعین باقی می‌ماند. با انجام اندازه گیری یکی از کمیت‌های جفت شده ذره اول معین می‌شود، این امر موجب می‌شود بی درنگ مقدار متناظر در ذره دوم مشخص گردد. به عبارت دیگر اگر دو سیستم یک بار با هم اندرکنش داشته و سپس از هم جدا شوند، اندازه گیری روی یکی از آن ها تاثیری آنی در حالت دیگری ایجاد می کند، حتی اگر این دو ذره خیلی از هم دور شده باشند. به طور مثال با مشخص شدن اینکه اسپین یکی از ذرات ساعتگرد است، اسپین ذره دوم بی درنگ به حالت پادساعتگرد می‌رود.

--برگرفته از ویکی پدیا